Wednesday 1 November 2017

Prognostisering glidande medelvärde formeln


Flyttande medelprognos Inledning. Som du kan gissa vi tittar på några av de mest primitiva metoderna för prognoser. Men förhoppningsvis är dessa åtminstone en värdefull introduktion till några av de datorproblem som är relaterade till att implementera prognoser i kalkylblad. I den här vägen fortsätter vi med att börja i början och börja arbeta med Moving Average prognoser. Flyttande medelprognoser. Alla är bekanta med att flytta genomsnittliga prognoser oavsett om de tror att de är. Alla studenter gör dem hela tiden. Tänk på dina testresultat i en kurs där du kommer att ha fyra tester under semestern. Låt oss anta att du fick en 85 på ditt första test. Vad skulle du förutse för ditt andra testresultat Vad tycker du att din lärare skulle förutsäga för nästa testresultat Vad tycker du att dina vänner kan förutsäga för nästa testresultat Vad tror du att dina föräldrar kan förutsäga för nästa testresultat Oavsett om Allt du kan göra med dina vänner och föräldrar, de och din lärare är mycket troliga att vänta dig på att få något i det 85-tal som du just fått. Nåväl, nu kan vi anta att trots din egen marknadsföring till dina vänner överskattar du dig själv och räknar att du kan studera mindre för det andra testet och så får du en 73. Nu är vad alla berörda och oroade kommer att Förutse att du kommer att få ditt tredje test Det finns två mycket troliga metoder för att de ska kunna utveckla en uppskattning oavsett om de kommer att dela den med dig. De kan säga till sig själva: "Denna kille sprider alltid rök om hans smarts. Hes kommer att få ytterligare 73 om han är lycklig. Kanske kommer föräldrarna att försöka vara mer stödjande och säga, quote, hittills har du fått en 85 och en 73, så kanske du ska räkna med att få en (85 73) 2 79. Jag vet inte, kanske om du gjorde mindre fest och werent vaggar väsan överallt och om du började göra mycket mer studerar kan du få en högre poäng. quot Båda dessa uppskattningar flyttade faktiskt genomsnittliga prognoser. Den första använder endast din senaste poäng för att förutse din framtida prestanda. Detta kallas en glidande genomsnittlig prognos med en period av data. Den andra är också en rörlig genomsnittlig prognos men använder två dataperioder. Låt oss anta att alla dessa människor bråkar på ditt stora sinne, har gissat dig och du bestämmer dig för att göra det bra på det tredje testet av dina egna skäl och att lägga en högre poäng framför din quotalliesquot. Du tar testet och din poäng är faktiskt en 89 Alla, inklusive dig själv, är imponerade. Så nu har du det sista testet av terminen som kommer upp och som vanligt känner du behovet av att ge alla till att göra sina förutsägelser om hur du ska göra på det sista testet. Jo, förhoppningsvis ser du mönstret. Nu kan du förhoppningsvis se mönstret. Vilken tror du är den mest exakta whistle medan vi jobbar. Nu återvänder vi till vårt nya rengöringsföretag som startas av din främmande halvsyster som heter Whistle While We Work. Du har några tidigare försäljningsdata som representeras av följande avsnitt från ett kalkylblad. Vi presenterar först data för en treårs glidande medelprognos. Posten för cell C6 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C7 till och med C11. Lägg märke till hur genomsnittet rör sig över de senaste historiska data men använder exakt de tre senaste perioderna som finns tillgängliga för varje förutsägelse. Du bör också märka att vi inte verkligen behöver göra förutsägelser för de senaste perioderna för att utveckla vår senaste förutsägelse. Detta är definitivt annorlunda än exponentiell utjämningsmodell. Ive inkluderade quotpast predictionsquot eftersom vi kommer att använda dem på nästa webbsida för att mäta förutsägelse validitet. Nu vill jag presentera de analoga resultaten för en tvåårs glidande medelprognos. Posten för cell C5 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C6 till och med C11. Lägg märke till hur nu endast de två senaste bitarna av historiska data används för varje förutsägelse. Återigen har jag inkluderat quotpast predictionsquot för illustrativa ändamål och för senare användning vid prognosvalidering. Några andra saker som är viktiga att märka. För en m-period som rör genomsnittlig prognos används endast de senaste datavärdena för att göra förutsägelsen. Inget annat är nödvändigt. För en m-period rörande genomsnittlig prognos, när du gör quotpast predictionsquot, notera att den första förutsägelsen sker i period m 1. Båda dessa problem kommer att vara väldigt signifikanta när vi utvecklar vår kod. Utveckla den rörliga genomsnittsfunktionen. Nu behöver vi utveckla koden för den glidande medelprognosen som kan användas mer flexibelt. Koden följer. Observera att inmatningarna är för antalet perioder du vill använda i prognosen och en rad historiska värden. Du kan lagra den i vilken arbetsbok du vill ha. Funktion MovingAverage (Historical, NumberOfPeriods) Som enkel deklarering och initialisering av variabler Dim-objekt som variant Dim-räknare som integer Dim-ackumulering som Single Dim HistoricalSize som heltal Initialiserande variabler Counter 1 ackumulering 0 Bestämning av storleken på Historisk matris Historisk storlek Historisk. Count för Counter 1 till NumberOfPeriods Ackumulera lämpligt antal senast tidigare observerade värden ackumulering ackumulering historisk (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Koden förklaras i klassen. Du vill placera funktionen på kalkylbladet så att resultatet av beräkningen visas där det ska tyckas om följande. Förflyttningsgenomsnitt I det här exemplet lär du dig hur du beräknar glidande medelvärdet för en tidsserie i Excel. Ett glidande medel används för att jämna ut oegentligheter (toppar och dalar) för att enkelt kunna känna igen trender. 1. Låt oss först titta på våra tidsserier. 2. Klicka på Dataanalys på fliken Data. Obs! Kan inte hitta knappen Data Analysis Klicka här för att ladda verktyget Analysis ToolPak. 3. Välj Flytta genomsnitt och klicka på OK. 4. Klicka i rutan Inmatningsområde och välj intervallet B2: M2. 5. Klicka i rutan Intervall och skriv 6. 6. Klicka i rutan Utmatningsområde och välj cell B3. 8. Skriv ett diagram över dessa värden. Förklaring: Eftersom vi ställer intervallet till 6 är det rörliga genomsnittet genomsnittet för de föregående 5 datapunkterna och den aktuella datapunkten. Som ett resultat utjämnas toppar och dalar. Diagrammet visar en ökande trend. Excel kan inte beräkna det rörliga genomsnittet för de första 5 datapunkterna, eftersom det inte finns tillräckligt med tidigare datapunkter. 9. Upprepa steg 2 till 8 för intervall 2 och intervall 4. Slutsats: Ju större intervall desto mer toppar och dalar släpper ut. Ju mindre intervall desto närmare rörliga medelvärden är de faktiska datapunkterna. I praktiken ger det glidande medelvärdet en bra uppskattning av medelvärdet av tidsserierna om medelvärdet är konstant eller långsamt förändras. I händelse av ett konstant medelvärde kommer det största värdet av m att ge de bästa uppskattningarna av det underliggande genomsnittet. En längre observationsperiod kommer att medeltala effekterna av variationen. Syftet med att tillhandahålla en mindre m är att tillåta prognosen att svara på en förändring i den underliggande processen. För att illustrera föreslår vi en dataset som innehåller förändringar i underliggande medelvärden av tidsserierna. Figuren visar tidsserien som används för illustration tillsammans med den genomsnittliga efterfrågan från vilken serien genererades. Medelvärdet börjar som en konstant vid 10. Börjar vid tid 21 ökar den med en enhet i varje period tills den når värdet 20 vid tidpunkten 30. Då blir det konstant igen. Uppgifterna simuleras genom att lägga till i genomsnitt ett slumpmässigt brus från en normalfördelning med nollvärde och standardavvikelse 3. Resultaten av simuleringen avrundas till närmsta heltal. Tabellen visar de simulerade observationer som används för exemplet. När vi använder bordet måste vi komma ihåg att vid varje given tidpunkt endast endast tidigare data är kända. Uppskattningarna av modellparametern, för tre olika värden på m visas tillsammans med medelvärdet av tidsserierna i figuren nedan. Figuren visar den genomsnittliga rörliga genomsnittliga beräkningen av medelvärdet vid varje tidpunkt och inte prognosen. Prognoserna skulle flytta de glidande medelkurvorna till höger av perioder. En slutsats framgår omedelbart av figuren. För alla tre uppskattningar ligger glidande medelvärde bakom den linjära trenden, där fördröjningen ökar med m. Lagen är avståndet mellan modellen och uppskattningen i tidsdimensionen. På grund av fördröjningen underskattar det rörliga genomsnittet observationerna när medelvärdet ökar. Estimatorns förspänning är skillnaden vid en viss tid i modellens medelvärde och medelvärdet förutspått av det rörliga genomsnittet. Förspänningen när medelvärdet ökar är negativt. För ett minskande medelvärde är förspänningen positiv. Fördröjningen i tid och den bias som införs i uppskattningen är funktionerna i m. Ju större värdet av m. desto större är storleken på fördröjning och förspänning. För en kontinuerligt ökande serie med trend a. värdena för fördröjning och förspänning av estimatorn av medelvärdet ges i ekvationerna nedan. Exemplet kurvorna stämmer inte överens med dessa ekvationer eftersom exemplet modellen inte ökar kontinuerligt, utan det börjar som en konstant, ändras till en trend och blir sedan konstant igen. Även kurvorna påverkas av bruset. Den glidande genomsnittliga prognosen för perioder i framtiden representeras genom att man ändrar kurvorna till höger. Fördröjningen och förskjutningen ökar proportionellt. Ekvationerna nedan anger fördröjningen och förspänningen av prognosperioder i framtiden jämfört med modellparametrarna. Återigen är dessa formler för en tidsserie med en konstant linjär trend. Vi borde inte bli förvånad över resultatet. Den rörliga genomsnittliga estimatorn är baserad på antagandet om ett konstant medelvärde och exemplet har en linjär trend i medelvärdet under en del av studieperioden. Eftersom realtidsserier sällan exakt kommer att följa antagandena till en modell, borde vi vara beredda på sådana resultat. Vi kan också dra av slutsatsen att brusets variabilitet har störst effekt för mindre m. Uppskattningen är mycket mer flyktig för det glidande medlet på 5 än det glidande medlet på 20. Vi har de motstridiga önskningarna att öka m för att minska effekten av variationer på grund av bullret och att minska m för att göra prognosen mer mottaglig för förändringar i medelvärdet. Felet är skillnaden mellan den faktiska data och det prognostiserade värdet. Om tidsserierna verkligen är ett konstant värde är det förväntade värdet av felet noll och variansen av felet består av en term som är en funktion av och en andra term som är brusets varians. Den första termen är medelvärdet av det medelvärde som uppskattas med ett urval av m-observationer, förutsatt att data kommer från en population med konstant medelvärde. Denna term minimeras genom att göra m så stor som möjligt. En stor m gör prognosen inte svarande mot en förändring i underliggande tidsserier. För att prognosen ska kunna reagera på förändringar vill vi m vara så liten som möjligt (1), men detta ökar felvariationen. Praktisk prognos kräver ett mellanvärde. Prognoser med Excel Prognosen för prognoser implementerar de glidande medelformlerna. Exemplet nedan visar analysen som tillhandahålls av tillägget för provdata i kolumn B. De första 10 observationerna indexeras -9 till 0. Jämfört med tabellen ovan förskjuts periodens index med -10. De första tio observationerna ger startvärdena för uppskattningen och används för att beräkna det glidande medlet för period 0. MA (10) kolumnen (C) visar de beräknade glidande medelvärdena. Den rörliga genomsnittsparametern m är i cell C3. Fore (1) kolumnen (D) visar en prognos för en period framåt. Prognosintervallet ligger i cell D3. När prognosintervallet ändras till ett större antal, flyttas numren i Fore-kolumnen nedåt. Err-kolumnen (E) visar skillnaden mellan observationen och prognosen. Till exempel är observationen vid tidpunkten 1 6. Det prognostiserade värdet som gjorts från det glidande medlet vid tidpunkten 0 är 11,1. Felet är då -5,1. Standardavvikelsen och genomsnittlig avvikelse (MAD) beräknas i cellerna E6 respektive E7.

No comments:

Post a Comment